3.358 \(\int \frac{x \sqrt{1+c^2 x^2}}{a+b \sinh ^{-1}(c x)} \, dx\)

Optimal. Leaf size=121 \[ -\frac{\sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{4 b c^2}-\frac{\sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{4 b c^2}+\frac{\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{4 b c^2}+\frac{\cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{4 b c^2} \]

[Out]

-(CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b])/(4*b*c^2) - (CoshIntegral[(3*(a + b*ArcSinh[c*x]))/b]*Sinh[(
3*a)/b])/(4*b*c^2) + (Cosh[a/b]*SinhIntegral[(a + b*ArcSinh[c*x])/b])/(4*b*c^2) + (Cosh[(3*a)/b]*SinhIntegral[
(3*(a + b*ArcSinh[c*x]))/b])/(4*b*c^2)

________________________________________________________________________________________

Rubi [A]  time = 0.312524, antiderivative size = 117, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {5779, 5448, 3303, 3298, 3301} \[ -\frac{\sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^2}-\frac{\sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^2}+\frac{\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^2}+\frac{\cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^2} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x]),x]

[Out]

-(CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b])/(4*b*c^2) - (CoshIntegral[(3*a)/b + 3*ArcSinh[c*x]]*Sinh[(3*a)/b
])/(4*b*c^2) + (Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(4*b*c^2) + (Cosh[(3*a)/b]*SinhIntegral[(3*a)/b +
3*ArcSinh[c*x]])/(4*b*c^2)

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{x \sqrt{1+c^2 x^2}}{a+b \sinh ^{-1}(c x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cosh ^2(x) \sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{\sinh (x)}{4 (a+b x)}+\frac{\sinh (3 x)}{4 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^2}+\frac{\operatorname{Subst}\left (\int \frac{\sinh (3 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^2}\\ &=\frac{\cosh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^2}+\frac{\cosh \left (\frac{3 a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^2}-\frac{\sinh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^2}-\frac{\sinh \left (\frac{3 a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^2}\\ &=-\frac{\text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right ) \sinh \left (\frac{a}{b}\right )}{4 b c^2}-\frac{\text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right ) \sinh \left (\frac{3 a}{b}\right )}{4 b c^2}+\frac{\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^2}+\frac{\cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^2}\\ \end{align*}

Mathematica [A]  time = 0.193129, size = 91, normalized size = 0.75 \[ \frac{\sinh \left (\frac{a}{b}\right ) \left (-\text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )-\sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )+\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )+\cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )}{4 b c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x]),x]

[Out]

(-(CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b]) - CoshIntegral[3*(a/b + ArcSinh[c*x])]*Sinh[(3*a)/b] + Cosh[a/b
]*SinhIntegral[a/b + ArcSinh[c*x]] + Cosh[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c*x])])/(4*b*c^2)

________________________________________________________________________________________

Maple [A]  time = 0.092, size = 118, normalized size = 1. \begin{align*}{\frac{1}{8\,{c}^{2}b}{{\rm e}^{3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,3\,{\it Arcsinh} \left ( cx \right ) +3\,{\frac{a}{b}} \right ) }+{\frac{1}{8\,{c}^{2}b}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( cx \right ) +{\frac{a}{b}} \right ) }-{\frac{1}{8\,{c}^{2}b}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( cx \right ) -{\frac{a}{b}} \right ) }-{\frac{1}{8\,{c}^{2}b}{{\rm e}^{-3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-3\,{\it Arcsinh} \left ( cx \right ) -3\,{\frac{a}{b}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x)

[Out]

1/8/c^2/b*exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)+1/8/c^2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)-1/8/c^2/b*exp(-a/b)*
Ei(1,-arcsinh(c*x)-a/b)-1/8/c^2/b*exp(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c^{2} x^{2} + 1} x}{b \operatorname{arsinh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

integrate(sqrt(c^2*x^2 + 1)*x/(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c^{2} x^{2} + 1} x}{b \operatorname{arsinh}\left (c x\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)*x/(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{c^{2} x^{2} + 1}}{a + b \operatorname{asinh}{\left (c x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c**2*x**2+1)**(1/2)/(a+b*asinh(c*x)),x)

[Out]

Integral(x*sqrt(c**2*x**2 + 1)/(a + b*asinh(c*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c^{2} x^{2} + 1} x}{b \operatorname{arsinh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

integrate(sqrt(c^2*x^2 + 1)*x/(b*arcsinh(c*x) + a), x)